SUBJECT CONTENT Knowledge of the content of O-Level Mathematics syllabus is assumed in the syllabus below and will not be tested directly, but it may be required indirectly in response to questions on other topics. | Topic/Sub-topics | | Content | | | | | |------------------|--------------------------------------|--|--|--|--|--| | ALGE | ALGEBRA | | | | | | | A1 | Equations and inequalities | Conditions for a quadratic equation to have: (i) two real roots (ii) two equal roots (iii) no real roots and related conditions for a given line to: (i) intersect a given curve (ii) be a tangent to a given curve (iii) not intersect a given curve Conditions for ax² + bx + c to be always positive (or always negative) Solving simultaneous equations in two variables with at least one linear equation, by substitution Relationships between the roots and coefficients of a quadratic equation Solving quadratic inequalities, and representing the solution on the number line | | | | | | A2 | Indices and surds | Four operations on indices and surds, including rationalising the denominator Solving equations involving indices and surds | | | | | | А3 | Polynomials and
Partial Fractions | Multiplication and division of polynomials Use of remainder and factor theorems Factorisation of polynomials Use of: a³ + b³ = (a + b)(a² - ab + b²) a³ - b³ = (a - b)(a² + ab + b²) Solving cubic equations Partial fractions with cases where the denominator is no more complicated than: (ax + b)(cx + d) (ax + b)(cx + d)² (ax + b)(x² + c²) | | | | | | A4 | Binomial
expansions | Use of the Binomial Theorem for positive integer n Use of the notations n! and (n)/r Use of the general term (n)/r (n) a^{n-r} b^r, 0 < r ≤ n (knowledge of the greatest term and properties of the coefficients is not required) | | | | | | Topic/Sub-topics | Content | |--|--| | A5 Power,
Exponential,
Logarithmic, and
Modulus functions | Power functions y = axⁿ where n is a simple rational number, and their graphs Exponential and logarithmic functions a^x, e^x, log_a x, ln x and their graphs, including: laws of logarithms equivalence of y = a^x and x = log_ay change of base of logarithms Modulus functions x and f(x) where f(x) is linear, quadratic or trigonometric, and their graphs Solving simple equations involving exponential, logarithmic and modulus functions | | GEOMETRY AND TRIGO | NOMETRY | | G1 Trigonometric functions, identities and equations | Six trigonometric functions for angles of any magnitude (in degrees or radians) Principal values of sin⁻¹x, cos⁻¹x, tan⁻¹x Exact values of the trigonometric functions for special angles (30°, 45°, 60°) or (π/6 · π/4 · π/3) Amplitude, periodicity and symmetries related to the sine and cosine functions Graphs of y = a sin (bx) + c, y = a sin (π/b) + c, y = a cos (bx) + c, y = a cos (π/b) + c and y = a tan (bx), where a is real, b is a positive integer and c is an integer. Use of the following sin A/cos A/sin A = cot A, sin²A + cos²A = 1, sec²A = 1 + tan²A, cosec²A = 1 + cot²A the expansions of sin(A ± B), cos(A ± B) and tan(A ± B) the formulae for sin 2A, cos 2A and tan 2A the expression for a cos θ + b sin θ in the form R cos (θ ± α) or R sin (θ ± α) Simplification of trigonometric expressions Solution of simple trigonometric equations in a given interval (excluding general solution) Proofs of simple trigonometric identities | | Topic/Sub-topics | | Content | |------------------|---|---| | G2 | Coordinate
geometry in two
dimensions | Condition for two lines to be parallel or perpendicular Midpoint of line segment Area of rectilinear figure Graphs of parabolas with equations in the form y² = kx Coordinate geometry of circles in the form: – (x - a)² + (y - b)² = r² – x² + y² + 2gx + 2fy + c = 0 (excluding problems involving 2 circles) Transformation of given relationships, including y = ax² and y = kb², to linear form to determine the unknown constants from a straight line graph | | G3 | Proofs in plane
geometry | Use of: properties of parallel lines cut by a transversal, perpendicular and angle bisectors, triangles, special quadrilaterals and circles* congruent and similar triangles* midpoint theorem tangent-chord theorem (alternate segment theorem) | | Calc | ulus | | | C1 | Differentiation and integration | Derivative of f(x) as the gradient of the tangent to the graph of y = f(x) at a point Derivative as rate of change Use of standard notations f'(x), f"(x), dy/dx, dx² = dx (dy/dx) = dx (dx/dx) Derivatives of x², for any rational n, sin x, cos x, tan x, ex, and ln x, together with constant multiples, sums and differences Derivatives of products and quotients of functions Derivatives of composite functions Increasing and decreasing functions Stationary points (maximum and minimum turning points and stationary points of inflexion) Use of second derivative test to discriminate between maxima and minima Applying differentiation to gradients, tangents and normals, connected rates of change and maxima and minima problems Integration as the reverse of differentiation Integration of x², for any rational n, sin x, cos x, sec² x and ex, together with constant multiples, sums and differences Integration of (ax + b)², for any rational n, sin(ax + b), cos(ax + b), and ex+b Definite integral as area under a curve Evaluation of definite integrals Finding the area of a region bounded by a curve and line(s) (excluding area of region between two curves) Finding areas of regions below the x-axis Application of differentiation and integration to problems involving displacement, velocity and acceleration of a particle moving in a straight line | ^{*} These are properties learnt in O Level Mathematics. ## MATHEMATICAL FORMULAE #### 1. ALGEBRA Quadratic Equation For the equation $ax^2 + bx + c = 0$, $$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$ Binomial expansion $$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$ where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$ ## 2. TRIGONOMETRY Identities $$\sin^2 A + \cos^2 A = 1$$ $$\sec^2 A = 1 + \tan^2 A$$ $$\csc^2 A = 1 + \cot^2 A$$ $$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$ $$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$ $$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$ $$\sin 2A = 2\sin A \cos A$$ $$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$ $$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$ Formulae for $\triangle ABC$ $$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$ $$a^2 = b^2 + c^2 - 2bc \cos A$$ $$\Delta = \frac{1}{2}bc \sin A$$ ## **MATHEMATICAL NOTATION** The list which follows summarises the notation used in Cambridge's Mathematics examinations. Although primarily directed towards A-Level, the list also applies, where relevant, to examinations at all other levels. #### 1. Set Notation | € | is an element of | |-------------------------|--| | ∉ | is not an element of | | $\{x_1, x_2, \ldots\}$ | the set with elements x_1, x_2, \ldots | | { <i>x</i> :} | the set of all x such that | | n(A) | the number of elements in set A | | Ø | the empty set | | 8 | universal set | | A' | the complement of the set A | | \mathbb{Z} | the set of integers, $\{0, \pm 1, \pm 2, \pm 3, \ldots\}$ | | \mathbb{Z}^{+} | the set of positive integers, {1, 2, 3,} | | Q | the set of rational numbers | | \mathbb{Q}^{+} | the set of positive rational numbers, $\{x \in \mathbb{Q}: x > 0\}$ | | \mathbb{Q}_0^+ | the set of positive rational numbers and zero, $\{x \in \mathbb{Q}: x \geqslant 0\}$ | | \mathbb{R} | the set of real numbers | | \mathbb{R}^{+} | the set of positive real numbers, $\{x \in \mathbb{R}: x > 0\}$ | | \mathbb{R}_0^+ | the set of positive real numbers and zero, $\{x \in \mathbb{R}: x \geqslant 0\}$ | | \mathbb{R}^n | the real <i>n</i> tuples | | \mathbb{C} | the set of complex numbers | | ⊆ | is a subset of | | C | is a proper subset of | | ⊈ | is not a subset of | | ⊄ | is not a proper subset of | | U | union | | \cap | intersection | | [<i>a</i> , <i>b</i>] | the closed interval $\{x \in \mathbb{R} : a \leqslant x \leqslant b\}$ | | [<i>a</i> , <i>b</i>) | the interval $\{x \in \mathbb{R} : a \leqslant x \leqslant b\}$ | | (a, b] | the interval $\{x \in \mathbb{R} : a \le x \le b\}$ | | (a, b) | the open interval $\{x \in \mathbb{R}: a < x < b\}$ | ## 2. Miscellaneous Symbols = is equal to ≠ is not equal to ≡ is identical to or is congruent to pprox is approximately equal to ∞ is proportional to < is less than ≼; ≯ is less than or equal to; is not greater than > is greater than >; ✓ is greater than or equal to; is not less than ∞ infinity ### 3. Operations a+b a plus b a-b a minus b $a \times b$, ab, a.b a multiplied by b $a \div b, \frac{a}{b}, a/b$ a divided by b a:b the ratio of a to b $\sum_{i=1}^{n} a_i \qquad a_1 + a_2 + \dots + a_n$ \sqrt{a} the positive square root of the real number a |a| the modulus of the real number a n! n factorial for $n \in \mathbb{Z}^+ \cup \{0\}$, (0! = 1) the binomial coefficient $\frac{n!}{r!(n-r)!}$, for $n, r \in \mathbb{Z}^+ \cup \{0\}$, $0 \le r \le n$ $\frac{n(n-1)...(n-r+1)}{r!}$, for $n \in \mathbb{Q}$, $r \in \mathbb{Z}^+ \cup \{0\}$ #### 4. Functions f function f f(x) the value of the function f at x f: $A \rightarrow B$ f is a function under which each element of set A has an image in set B f: $x \mapsto y$ the function f maps the element x to the element y f^{-1} the inverse of the function f $g \circ f, gf$ the composite function of f and g which is defined by $(g \circ f)(x)$ or gf(x) = g(f(x)) $\lim_{x \to a} f(x)$ the limit of f(x) as x tends to a Δx ; δx an increment of x $\frac{\mathrm{d}y}{\mathrm{d}x}$ the derivative of y with respect to x $\frac{d^n y}{dx^n}$ the *n*th derivative of *y* with respect to *x* $f'(x), f''(x), ..., f^{(n)}(x)$ the first, second, ... nth derivatives of f(x) with respect to x $\int y dx$ indefinite integral of y with respect to x $\int_{a}^{b} y dx$ the definite integral of y with respect to x for values of x between a and b \dot{x}, \ddot{x}, \dots the first, second, ...derivatives of x with respect to time ## 5. Exponential and Logarithmic Functions e base of natural logarithms e^x , exp x exponential function of x $\log_a x$ logarithm to the base a of x ln x natural logarithm of x logarithm of x to base 10 #### 6. Circular Functions and Relations $\begin{cases} \sin, \cos, \tan, \\ \cos, \sec, \cot \end{cases}$ the circular functions $\frac{\sin^{-1}, \cos^{-1}, \tan^{-1}}{\csc^{-1}, \sec^{-1}, \cot^{-1}}$ the inverse circular functions ## 7. Complex Numbers i square root of -1 z a complex number, z = x + iy $= r(\cos\theta + i\sin\theta), r \in \mathbb{R}_0^+$ $= r \mathrm{e}^{\mathrm{i}\theta}, r \in \mathbb{R}_0^+$ Re z the real part of z, Re (x + iy) = x Im z the imaginary part of z, Im (x + iy) = y |z| the modulus of z, $|x + iy| = \sqrt{x^2 + y^2}$, $|r(\cos\theta + i\sin\theta)| = r$ arg z the argument of z, $arg(r(\cos\theta + i\sin\theta)) = \theta$, $-\pi < \theta \le \pi$ z^* the complex conjugate of z, $(x + iy)^* = x - iy$ #### 8. Matrices M a matrix M M⁻¹ the inverse of the square matrix MM^T the transpose of the matrix M det M the determinant of the square matrix M #### 9. Vectors a the vector a \overrightarrow{AB} the vector represented in magnitude and direction by the directed line segment \overrightarrow{AB} â a unit vector in the direction of the vector a i, j, k unit vectors in the directions of the cartesian coordinate axes a the magnitude of a \overrightarrow{AB} the magnitude of \overrightarrow{AB} a.b the scalar product of a and ba×b the vector product of a and b #### 10. Probability and Statistics A, B, C, etc. events $A \cup B$ union of events A and B $A \cap B$ intersection of the events A and B P(A) probability of the event A A' complement of the event A, the event 'not A' P($A \mid B$) probability of the event A given the event B X, Y, R, etc. random variables x, y, r, etc. value of the random variables X, Y, R, etc. x_1, x_2, \dots observations $f_1, f_2,...$ frequencies with which the observations, x_1, x_2 ...occur p(x) the value of the probability function P(X = x) of the discrete random variable X $p_1, p_2...$ probabilities of the values $x_1, x_2, ...$ of the discrete random variable X f(x), g(x)... the value of the probability density function of the continuous random variable X F(x), G(x)... the value of the (cumulative) distribution function $P(X \le x)$ of the random variable X E(X) expectation of the random variable X E[g(X)] expectation of g(X) Var(X) variance of the random variable X B(n, p) binominal distribution, parameters n and p Po(μ) Poisson distribution, mean μ $N(\mu, \sigma^2)$ normal distribution, mean μ and variance σ^2 μ population mean σ^2 population variance σ population standard deviation \overline{x} sample mean unbiased estimate of population variance from a sample, s^2 $s^2 = \frac{1}{n-1} \sum (x - \overline{x})^2$ probability density function of the standardised normal variable with distribution ϕ N (0, 1) Φ corresponding cumulative distribution function ρ linear product-moment correlation coefficient for a population r linear product-moment correlation coefficient for a sample